On Filtering with Observation in a Manifold: Reduction to a Classical Filtering Problem

نویسندگان

  • Salem Said
  • Jonathan H. Manton
چکیده

The current paper deals with filtering problems where the observation process, conditioned on the unknown signal, is an elliptic diffusion in a differentiable manifold. Precisely, the observation model is given by a stochastic differential equation in the underlying manifold. The main new idea is to use a Le Jan-Watanabe connection, instead of a usual Levi-Civita connection, in performing the operation of antidevelopment (both connections can be constructed from a stochastic differential equation as in the observation model). The following results are obtained. First, it is shown that antidevelopment reduces the original filtering problem to a classical one, i.e. an additive white noise model. Second, a new form of the Zakai and filtering equations is derived which has a structure very similar to that of classical equations. Currently, there are few well understood general numerical solution methods for filtering problems with observation in a manifold. Reduction to classical filtering problems seems desirable as it allows proven existing numerical methods for classical problems to be applied immediately. In view of practical implementation of this approach, the paper also gives an explicit pathwise construction of the antidevelopment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

Delay Spoofing Reduction in GPS Navigation System based on Time and Transform Domain Adaptive Filtering

Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive f...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013